SAR in Parallel Transmission


Journal article


I. Graesslin, D. Glaesel, S. Biederer, F. Schweser, P. Vernickel, Peter Börnert, B. Annighoefer, H. Stahl, H. Dingemans, G. Mens, P. Harvey, U. Katscher
2008

Semantic Scholar DOI
Cite

Cite

APA
Graesslin, I., Glaesel, D., Biederer, S., Schweser, F., Vernickel, P., Börnert, P., … Katscher, U. (2008). SAR in Parallel Transmission.

Chicago/Turabian
Graesslin, I., D. Glaesel, S. Biederer, F. Schweser, P. Vernickel, Peter Börnert, B. Annighoefer, et al. “SAR in Parallel Transmission” (2008).

MLA
Graesslin, I., et al. SAR in Parallel Transmission. 2008.


Abstract

Parallel transmission bears the potential of compensating B1 fleld inhomogeneities induced by wave propagation efiects in (ultra) high fleld whole body MR imaging. However, with increasing fleld strength, the RF power deposition and the associated local speciflc absorption rate (SAR) represent an important attention point with respect to patient safety. This paper presents simulations of a 3T whole body eight-channel transmit/receive body coil loaded with a human bio-mesh model. Phantom SAR simulations were carried out and validated by temperature measurements. A good correlation between SAR simulations and measured temperature was obtained, so that the FDTD method can be considered to be a valuable tool in determining (local) SAR for patient safety in multi-channel transmission MRI systems.