DeepGRAI (Deep Gray Rating via Artificial Intelligence): Fast, feasible, and clinically relevant thalamic atrophy measurement on clinical quality T2-FLAIR MRI in multiple sclerosis


Journal article


M. Dwyer, Cassondra Lyman, Hannah Ferrari, N. Bergsland, T. Fuchs, D. Jakimovski, F. Schweser, Bianca Weinstock-Guttmann, R. Benedict, Jon Riolo, Diego G. Silva, R. Zivadinov
NeuroImage: Clinical, 2021

Semantic Scholar DOI PubMedCentral PubMed
Cite

Cite

APA   Click to copy
Dwyer, M., Lyman, C., Ferrari, H., Bergsland, N., Fuchs, T., Jakimovski, D., … Zivadinov, R. (2021). DeepGRAI (Deep Gray Rating via Artificial Intelligence): Fast, feasible, and clinically relevant thalamic atrophy measurement on clinical quality T2-FLAIR MRI in multiple sclerosis. NeuroImage: Clinical.


Chicago/Turabian   Click to copy
Dwyer, M., Cassondra Lyman, Hannah Ferrari, N. Bergsland, T. Fuchs, D. Jakimovski, F. Schweser, et al. “DeepGRAI (Deep Gray Rating via Artificial Intelligence): Fast, Feasible, and Clinically Relevant Thalamic Atrophy Measurement on Clinical Quality T2-FLAIR MRI in Multiple Sclerosis.” NeuroImage: Clinical (2021).


MLA   Click to copy
Dwyer, M., et al. “DeepGRAI (Deep Gray Rating via Artificial Intelligence): Fast, Feasible, and Clinically Relevant Thalamic Atrophy Measurement on Clinical Quality T2-FLAIR MRI in Multiple Sclerosis.” NeuroImage: Clinical, 2021.


BibTeX   Click to copy

@article{m2021a,
  title = {DeepGRAI (Deep Gray Rating via Artificial Intelligence): Fast, feasible, and clinically relevant thalamic atrophy measurement on clinical quality T2-FLAIR MRI in multiple sclerosis},
  year = {2021},
  journal = {NeuroImage: Clinical},
  author = {Dwyer, M. and Lyman, Cassondra and Ferrari, Hannah and Bergsland, N. and Fuchs, T. and Jakimovski, D. and Schweser, F. and Weinstock-Guttmann, Bianca and Benedict, R. and Riolo, Jon and Silva, Diego G. and Zivadinov, R.}
}





Follow this website


You need to create an Owlstown account to follow this website.


Sign up

Already an Owlstown member?

Log in